घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए

$P ( A -$ नही $)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.42$, $P ( B )=0.48$, $P ( A $ and $B )=0.16$

$P ($ not $A )=1- P ( A )=1-0.42=0.58$

Similar Questions

माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ व $P(\bar A) = \frac{1}{4},$ जहाँ $\bar A$, घटना $A$ की पूरक है तब $A$ तथा $B$ हैं

  • [AIEEE 2005]

तीन घटनाओं $A, B$ एवं $C$ के लिये प्रायिकताओं $P$ ($A$ अथवा $B$ में केवल एक घटित होती है)= $P$ ($B$ अथवा $C$ में केवल एक घटित होती है) = $P$ ($A$ अथवा $C$ में केवल एक घटित होती है)= $p$ तथा $P$ (तीनों घटनाएँ एक साथ घटित होती हैं) $ = {p^2},$ जहाँ $0 < p < 1/2$ है। तीनों घटनाओं $A, B$ और $C$ में कम से कम एक के घटित होने की प्रायिकता है

  • [IIT 1996]

$A$ व $B$ के एक वर्ष में मरने की प्रायिकतायें क्रमश: $p$ व $q$ हैं तो उनमें से केवल एक वर्ष के अन्त में जिन्दा रहे, इसकी प्रायिकता है

एक प्रवेश परीक्षा को दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायकिता $0.8$ है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता $0.7$ है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता $0.95$ है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है ?

यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $