एक वृत्त जिसका केन्द्र $(a, b)$ है मूल बिन्दु से गुजरता है। मूल बिन्दु पर वृत्त की स्पर्श रेखा का समीकरण है

  • A

    $ax - by = 0$

  • B

    $ax + by = 0$

  • C

    $bx - ay = 0$

  • D

    $bx + ay = 0$

Similar Questions

वृत्त ${x^2} + {y^2} - 2x - 4y - 4 = 0$ पर स्पर्श रेखा का समीकरण जो रेखा $3x - 4y - 1 = 0$ पर लम्ब है, होगा

उस बिन्दु के निर्देशांक जिससे वृत्तों ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ व ${x^2} + {y^2} + 10y + 24 = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ बराबर हैं, है

वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है

यदि रेखा $lx + my + n = 0$ वृत्त ${(x - h)^2} + {(y - k)^2} = {a^2}$ की स्पर्श रेखा हो, तो

बिन्दु $(h, k)$ से वृत्त ${x^2} + {y^2} = {a^2}$ पर खींची गयी स्पर्श रेखाओं तथा उनके स्पर्श बिन्दुओं को मिलाने वाली रेखा द्वारा बने त्रिभुज का क्षेत्रफल है