रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ का अभिलम्ब है, यदि
$lg + mf - n = 0$
$lg + mf + n = 0$
$lg = mf - n = 0$
$lg - mf + n = 0$
यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 2x - 4y + 3 = 0$ को बिन्दु $(2, 3)$ पर स्पर्श करती हो, तो $c =$
माना वृत्त $x ^2+ y ^2= r ^2$ जहाँ $r >\frac{\sqrt{5}}{2}$ है का केन्द्र $O$ है। माना इस वृत्त की जीवा $PQ$ तथा रेखा का समीकरण, जो बिन्दु $P$ तथा $Q$ से गुजरता है, $2 x +4 y =5$ है। यदि त्रिभुज $OPQ$ के परिवृत्त का केन्द्र रेखा $x +2 y =4$ पर स्थित हो, तो $r$ का मान होगा. . . . .
माना $C$ एक वृत्त है जिसका केंद्र $(1,1)$ पर है तथा त्रिज्या $=1$ है। यदि $T$ केंद्र $(0, y)$ वाला वृत्त है जो मूल बिंदु से हो कर जाता है तथा वृत्त $C$ को बाह्य रूप से स्पर्श करता है, तो $T$ की त्रिज्या बराबर है:
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है