माना वत्त $x ^{2}+ y ^{2}+ ax +2 ay + c =0,( a <0)$ द्वारा $x$-अक्ष तथा $y$-अक्ष पर बनाये गये अंतःखंडों की लम्बाईयोँ क्रमशः $2 \sqrt{2}$ तथा $2 \sqrt{5}$ हैं। तो इस वत्त की एक स्पर्श रेखा, जो रेखा $x +2 y =0$ के लम्बवत है, की मूलबिंदु से न्यूनतम दूरी बराबर है

  • [JEE MAIN 2021]
  • A

    $\sqrt{11}$

  • B

    $\sqrt{7}$

  • C

    $\sqrt{6}$

  • D

    $\sqrt{10}$

Similar Questions

माना कि बिन्दु $B$ रेखा $8 x -6 y -23=0$ के सापेक्ष बिन्दु $A (2,3)$ का प्रतिबिम्ब (reflection) है। माना कि $\Gamma_A$ और $\Gamma_{ B }$ क्रमश: त्रिज्याएँ $2$ और $1$ वाले वृत्त हैं, जिनके केन्द्र क्रमश: $A$ और $B$ हैं। माना कि वृत्तों $\Gamma_{ A }$ और $\Gamma_{ B }$ की एक ऐसी उभयनिष्ठ स्पर्श (common tangent) रेखा $T$ हैं, दोनों वृत्त जिसके एक ही तरफ हैं। यदि $C$, बिन्दुओं $A$ और $B$ से जाने वाली रेखा और $T$ का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड (line segment) $AC$ की लम्बाई है . . . . .

  • [IIT 2019]

तीन वृत्तों के समीकरण ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ तथा ${x^2} + {y^2} - 16x + 81 = 0$ हैं, तब उस बिन्दु के निर्देशांक, जिससे तीनों वृत्तों पर खींची गई स्पर्श रेखाओं की लम्बाई बराबर हो, हैं

युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है

$5$ इकाई त्रिज्या के दो वत्त एक दूसरे को बिन्दु $(1,2)$ पर स्पर्श करते हैं। यदि उनकी उभयनिष्ठ स्पर्श रेखा का समीकरण $4 x +3 y =10$ है तथा उनके केन्द्र $C _{1}(\alpha, \beta)$ और $C _{2}(\gamma, \delta), C _{1} \neq C _{2}$ हैं, तो $|(\alpha+\beta)(\gamma+\delta)|$ बराबर हैं ........... |

  • [JEE MAIN 2021]

यदि ${c^2} > {a^2}(1 + {m^2})$ तो रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ को काटेगी