वृत्त ${x^2} + {y^2} = {a^2}$ के एक बिन्दु से, वृत्त ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $ पर दो स्पर्श रेखायें खींची जाती हैं, तब उनके मध्य का कोण है
$\frac{\alpha }{2}$
$\alpha $
$2\alpha $
इनमें से कोई नहीं
मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् हैं, यदि
माना बिंदु $P (0, h )$ से वृत्त $x^{2}+y^{2}=16$ पर खींची गई स्पर्श रेखाएँ $x$-अक्ष को बिंदुओं $A$ तथा $B$ पर मिलती हैं। यदि $\triangle APB$ का क्षेत्रफल न्यूनतम है, तो $h$ बराबर है
वृत्त ${x^2} + {y^2} - 4x - 2y - 11 = 0$ पर बिन्दु $(4, 5)$ से स्पर्श रेखायें खींची जाती हैं तो इन स्पर्श रेखाओं व त्रिज्याओ से बने चतुभ्र्ज का क्षेत्रफल ............ वर्ग इकाई है
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को
बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं