तीन घटनाओं $A$, $B$ तथा $C$ के लिए

$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$

$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$

$=P(C$ अथवा $A$ में से केबल एक घटित होती है

$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)

$=\frac{1}{16}$ है,

तो प्रायिकता कि कम से कम एक घटना घटित हो, है:

  • [JEE MAIN 2017]
  • A

    $\frac{3}{{16}}$

  • B

    $\frac{7}{{32}}$

  • C

    $\frac{7}{{16}}$

  • D

    $\frac{7}{{64}}$

Similar Questions

यदि $A, B, C$ ऐसी घटनाएँ हैं कि $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ तो $P\,(A + B) = $

यदि एक घटना के प्रतिकूल संयोगानुपात $2 : 3$ हो, तो उसके घटने की प्रायिकता है

$A$ व $B$ दो परस्पर अपवर्जी घटनायें इस प्रकार हैं कि $P(A) = 0.45$ व $P(B) = 0.35,$ तो $P (A$ या $B$) का मान है

निम्नलिखित सारणी में खाली स्थान भरिए

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$

यदि $P(A \cup B) = 0.8$ तथा $P(A \cap B) = 0.3,$ तब $P(\bar A) + P(\bar B) = $