A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.
Then $n( F )=38, n( B )=15, n( C )=20$
$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$
Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$
$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$
$n( F \cap B \cap C )$
gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$
Consider the Venn diagram as given in Fig
Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.
Thus, $d=n( F \cap B \cap C )=3$ and $a+d+b+d+c+d=18$
Therefore $a+b+c=9,$
which is the number of people who got medals in exactly two of the three sports.
In a college of $300$ students, every student reads $5$ newspaper and every newspaper is read by $60$ students. The no. of newspaper is
In a battle $70\%$ of the combatants lost one eye, $80\%$ an ear, $75\%$ an arm, $85\%$ a leg, $x\%$ lost all the four limbs. The minimum value of $x$ is
In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.
In a certain town $25\%$ families own a phone and $15\%$ own a car, $65\%$ families own neither a phone nor a car. $2000$ families own both a car and a phone. Consider the following statements in this regard:
$1$. $10\%$ families own both a car and a phone
$2$. $35\%$ families own either a car or a phone
$3$. $40,000$ families live in the town
Which of the above statements are correct
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C _{1}$ but not chemical $C _{2}$