A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.

Then $n( F )=38, n( B )=15, n( C )=20$

$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$

Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$

$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$

$n( F \cap B \cap C )$

gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$

Consider the Venn diagram as given in Fig 

Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.

Thus, $d=n( F \cap B \cap C )=3$ and  $a+d+b+d+c+d=18$

Therefore $a+b+c=9,$

which is the number of people who got medals in exactly two of the three sports.

865-s239

Similar Questions

In a college of $300$ students, every student reads $5$ newspaper and every newspaper is read by $60$ students. The no. of newspaper is 

  • [IIT 1998]

In a battle $70\%$ of the combatants lost one eye, $80\%$ an ear, $75\%$ an arm, $85\%$ a leg, $x\%$ lost all the four limbs. The minimum value of $x$ is

In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.

In a certain town $25\%$ families own a phone and $15\%$ own a car, $65\%$ families own neither a phone nor a car. $2000$ families own both a car and a phone. Consider the following statements in this regard:

$1$. $10\%$ families own both a car and a phone

$2$. $35\%$ families own either a car or a phone

$3$. $40,000$ families live in the town

Which of the above statements are correct

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C _{1}$ but not chemical $C _{2}$