A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.
Then $n( F )=38, n( B )=15, n( C )=20$
$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$
Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$
$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$
$n( F \cap B \cap C )$
gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$
Consider the Venn diagram as given in Fig
Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.
Thus, $d=n( F \cap B \cap C )=3$ and $a+d+b+d+c+d=18$
Therefore $a+b+c=9,$
which is the number of people who got medals in exactly two of the three sports.
In a group of $400$ people, $250$ can speak Hindi and $200$ can speak English. How many people can speak both Hindi and English?
A survey shows that $63 \%$ of the people in a city read newspaper $A$ whereas $76 \%$ read newspaper $B$. If $x \%$ of the people read both the newspapers, then a possible value of $x$ can be
In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?
In a town of $10,000$ families it was found that $40\%$ family buy newspaper $A, 20\%$ buy newspaper $B$ and $10\%$ families buy newspaper $C, 5\%$ families buy $A$ and $B, 3\%$ buy $B$ and $C$ and $4\%$ buy $A$ and $C$. If $2\%$ families buy all the three newspapers, then number of families which buy $A$ only is
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?