A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.

Then $n( F )=38, n( B )=15, n( C )=20$

$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$

Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$

$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$

$n( F \cap B \cap C )$

gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$

Consider the Venn diagram as given in Fig 

Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.

Thus, $d=n( F \cap B \cap C )=3$ and  $a+d+b+d+c+d=18$

Therefore $a+b+c=9,$

which is the number of people who got medals in exactly two of the three sports.

865-s239

Similar Questions

In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?

In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................

  • [JEE MAIN 2024]

Out of $800$ boys in a school, $224$ played cricket, $240$ played hockey and $336$ played basketball. Of the total, $64$ played both basketball and hockey; $80$ played cricket and basketball and $40$ played cricket and hockey; $24$ played all the three games. The number of boys who did not play any game is

In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:

the number of people who read at least one of the newspapers.

In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is

  • [KVPY 2017]