A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.
Then $n( F )=38, n( B )=15, n( C )=20$
$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$
Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$
$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$
$n( F \cap B \cap C )$
gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$
Consider the Venn diagram as given in Fig
Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.
Thus, $d=n( F \cap B \cap C )=3$ and $a+d+b+d+c+d=18$
Therefore $a+b+c=9,$
which is the number of people who got medals in exactly two of the three sports.
In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................
Out of $800$ boys in a school, $224$ played cricket, $240$ played hockey and $336$ played basketball. Of the total, $64$ played both basketball and hockey; $80$ played cricket and basketball and $40$ played cricket and hockey; $24$ played all the three games. The number of boys who did not play any game is
In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read at least one of the newspapers.
In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is