A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.

Then $n( F )=38, n( B )=15, n( C )=20$

$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$

Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$

$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$

$n( F \cap B \cap C )$

gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$

Consider the Venn diagram as given in Fig 

Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.

Thus, $d=n( F \cap B \cap C )=3$ and  $a+d+b+d+c+d=18$

Therefore $a+b+c=9,$

which is the number of people who got medals in exactly two of the three sports.

865-s239

Similar Questions

In a certain school, $74 \%$ students like cricket, $76 \%$ students like football and $82 \%$ like tennis. Then, all the three sports are liked by at least $......\%$

  • [KVPY 2009]

In a group of students, $100$ students know Hindi, $50$ know English and $25$ know both. Each of the students knows either Hindi or English. How many students are there in the group?

In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

In a survey it was found that $21$ people liked product $A, 26$ liked product $B$ and $29$ liked product $C.$ If $14$ people liked products $A$ and $B, 12$ people liked products $C$ and $A, 14$ people liked products $B$ and $C$ and $8$ liked all the three products. Find how many liked product $C$ only.

Out of all the patients in a hospital $89\, \%$ are found to be suffering from heart ailment and $98\, \%$ are suffering from lungs infection. If $\mathrm{K}\, \%$ of them are suffering from both ailments, then $\mathrm{K}$ can not belong to the set :

  • [JEE MAIN 2021]