यदि $^{n}{P_4} = 24.{\,^n}{C_5},$ तो $n$ का मान होगा
$10$
$15$
$9$
$5$
$r$ का वह मान, जिसके लिये ${ }^{20} C _{ r }{ }^{20} C _{0}+{ }^{20} C _{ r -1}{ }^{20} C _{1}$ $+{ }^{20} C _{ r -2}{ }^{20} C _{2}+\ldots{ }^{20} C _{0}{ }^{20} C _{ r }$ अधिकतम है
एक व्यक्ति के $7$ मित्र हैं। वह कितनी विधियों से उनमें से एक या अधिक को चाय पर बुला सकता है
$2 \le r \le n$ केलिए,$\left({\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
यदि $^{{n^2} - n}{C_2}{ = ^{{n^2} - n}}{C_{10}}$, तो $n = $
$10$ व्यक्ति, जिनमें $A, B$ तथा $C$ सम्मिलित हैं, एक कार्यक्रम में भाषण देने वाले हैं। यदि $A, B$ के पूर्व भाषण देना चाहे तथा $B,C$ के पूर्व भाषण देना चाहे तब कुल कितने प्रकार से यह कार्यक्रम हो सकेगा