जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.7, P ( A \cap B )=0.6$
$P ( A )=0.5$, $P ( B )=0.7$, $P (A \cap B)=0.6$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
However, $P (A \cap B)> P ( A )$
Hence, $P ( A )$ and $P ( B )$ are not consistently defined.
यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
दो घटनाओं के घटित होने की प्रायिकताएँ क्रमश: $0.21$ तथा $0.49$ हैं। दोनों के साथ-साथ घटने की प्रायिकता $0.16$ है तब दोनों में से किसी के भी घटित न होने की प्रायिकता है
$52$ ताशों की एक गड्डी से एक ताश निकाला जाता है। एक जुआरी शर्त लगाता है कि यह हुकुम का पत्ता है या इक्का उसके इस शर्त को जीतने के प्रतिकूल संयोगानुपात है
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ -नहीं $)$ का मान ज्ञात कीजिए।
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = P\,(A \cap B),$ तो सत्य सम्बन्ध है