जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.7, P ( A \cap B )=0.6$
$P ( A )=0.5$, $P ( B )=0.7$, $P (A \cap B)=0.6$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
However, $P (A \cap B)> P ( A )$
Hence, $P ( A )$ and $P ( B )$ are not consistently defined.
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
एक परीक्षण (experiment) पर विचार कीजिए जिसमें एक सिक्के को बार बार लगातार उछाला जाता है और जैसे ही दो क्रमागत (consecutive) उछालों का परिणाम (outcome) समान आता है, परीक्षण रोक दिया जाता है। यदि एक याद्धच्छिक उछाल का परिणाम चित्त में (random toss resulting in head) होने की प्रायिकता $\frac{1}{3}$ है, तब परीक्षण के चित्त (head) के साथ रुकने कि प्रायिकता है
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( B \cap A ^{\prime}\right)$
माना $S =\{1,2,3, \ldots, 2022\}$ है। तब समुच्चय $S$ से यादृच्छया चुनी गई एक संख्या $n$ के लिए $HCF$ $( n , 2022)=1$ होने की प्रायिकता है:
$A$ व $B$ दो स्वतंत्र घटनायें हैं। दोनों $A$ व $B$ के घटने की प्रायिकता $\frac{1}{6}$ है तथा उनमें से किसी के भी न घटने की प्रायिकता $\frac{1}{3}$ हैं, तो दोनों घटनाओं की प्रायिकतायें क्रमश: हैं