इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।
त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है
प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।
प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।
प्रकथन $-1$ सही है, प्रकथन $-2$ सही है, प्रकथन $-2$ प्रकथन $-1$ की सही व्याख्या करता है
प्रकथन $-1$ सही है, प्रकथन $-2$ सही है, प्रकथन $-2$ प्रकथन $-1$ की सही व्याख्या नहीं करता है
प्रकथन $-1$ सही है, प्रकथन $-2$ गलत है
प्रकथन $-1$ गलत है, प्रकथन $-2$ सही है
चित्र में आतंरिक (छायांकित) क्षेत्र $A$ एक $r_{-1}=1$ त्रिज्या के गोले को प्रदर्शित करता है, जिसके अन्दर विधुत आवेश घनत्व (electrostatic charge density) $\rho_{-1}=k r$ केंद्र से त्रिज्य-दूरी $r$ के साथ बदलता है, जहां $k$ धनात्मक है। $r_B$ त्रिज्या के बाह्य (outer) गोलीय खोल $B$ में, विधुत आवेश घनत्व $\rho_B=\frac{2 k}{r}$ से बदलता है। मान लें कि यूनिट्स का ध्यान रखा गया है। सभी भौतिकी मात्रायें (quantities) SI मानक में है।
निम्न में से कौन सा (से) कथन सही है (हैं)।
$(a)$ दो आवेशों $7 \mu \,C$ तथा $-2 \mu\, C$ जो क्रमशः $(-9 \,cm , 0,0)$ तथा $(9 \,cm , 0,0)$ पर स्थित हैं, के ऐसे निकाय, जिस पर कोई बाह्य क्षेत्र आरोपित नहीं है, की स्थिरवैध्यूत स्थितिज की ऊर्जा ज्ञात कीजिए।
$(b)$ दोनों आवेशों को एक-दूसरे से अनंत दूरी तक पृथक करने के लिए कितने कार्य की आवश्यकता होगी?
$(c)$ माना कि अब इस आवेश निकाय को किसी बाह्य विध्युत क्षेत्र $E=A\left(1 / r^{2}\right) \, ;$ $A=9 \times 10^{5} C m ^{-2}$ में रखा गया है। इस विन्यास की स्थिरवैध्यूत ऊर्जा का परिकलन करें
दो समान पतले वलय, जिनमें से प्रत्येक की त्रिज्या $R$ मीटर है, एक-दूसरे से $R$ मीटर की दूरी पर समाक्षत: रख दिए जाते हैं। यदि $Q_1$ कूलॉम और $Q_2$ कूलॉम आवेश उन वलयों पर समान रूप से फैला दिए जाते हें तो एक आवेश $q$ को एक वलय के केन्द्र से दूसरे वलय के केन्द्र तक ले जाने में किया गया कार्य होगा
धन आवेश को समविभव सतह पर चलाने में किया गया कार्य है
एक त्रिज्या $R$ तथा एकसमान धनात्मक आवेश घनत्व (positive charge density) $\sigma$ की चक्रिका को $x y$ तल पर रखा गया है और इसका केंद्र मूल बिंदु पर है। कूलाम्ब विभव $z$ अक्ष पर $V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$ है। एक कण जिसका धनात्मक आवेश $q$ है को प्रारंभ में विरामावस्था में $z$ अक्ष पर $z=z_0$ तथा $z_0>0$ स्थिति पर रखा जाता है। इसके अतिरिक्त एक कण पर उध्वार्धर (vertical) बल $\vec{F}=-c \hat{k}$ लगता है, जहाँ $c>0$ है। $\beta=\frac{2 c \epsilon_0}{q \sigma}$ लें। निम्न में से कौन सा (से) कथन सही है (हैं)।
$(A)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{25}{7} R$ के लिए कण मूल बिंदु (origin) पर पहुँचता है।
$(B)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{3}{7} R$ के लिये कण मूल बिंदु पर पहुँचता है।
$(C)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{R}{\sqrt{3}}$ के लिए कण $z=z_0$ पर वापस आता है।
$(D)$ $\beta>1$ तथा $z_0>0$ के लिये कण हमेशा मूल बिंदु पर पहुँचता है।