એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે  $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given the relation, $m=\frac{m_{0}}{\left(1-v^{2}\right)^{\frac{1}{2}}}$

Dimension of $m= M ^{1} L ^{0} T ^{0}$

Dimension of $m_{0}= M ^{1} L ^{0} T ^{0}$

Dimension of $v= M ^{0} L ^{1} T ^{-1}$

Dimension of $v^{2}= M ^{0} L ^{2} T ^{-2}$

Dimension of $c= M ^{0} L ^{1} T ^{-1}$

The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S.

This is only possible when the factor, $\left(1-v^{2}\right)^{1 / 2}$ is dimensionless i.e., $\left(1-v^{2}\right)$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2} .$

Hence, the correct relation is

$m=\frac{m_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$

Similar Questions

પરિમાણરહિત રાશી $P$ ને સમીકરણ $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x}\right)$ થી આપવામાં આવે છે; જ્યાં $\alpha$ અને $\beta$ અચળાંકો, $x$ એ અંતર; $k$ એ બોલ્ટઝમાન અચળાંક અને $t$ એ તાપમાન છે, $\alpha$ નું પરિમાણ ............. થશે.

  • [JEE MAIN 2022]

$M{L^{ - 1}}{T^{ - 2}}$ એ કઈ રાશિ પ્રદર્શિત કરે?

પરિમાણ વિશ્લેષણનો ઉપયોગ કરીને નીચેનામાંથી ક્યો સંબંધ તારવી શકાય ? [સંકેતોને તેમના સામાન્ય અર્થ દર્શાવે છે.]

સમીકરણ $X=3 Y Z^{2}$ માં $X$ અને $Z$ એ કેપેસીટન્સ અને ચુંબકીય પ્રેરણ છે તો $MKSQ$ પધ્ધતિમાં $Y$ નું પારિમાણિક સૂત્ર શું થાય?

  • [AIIMS 2017]

જો $A$ અને $B$ બે અલગ અલગ પારિમાણિક સૂત્ર ધરાવતી ભૌતિક રાશિ હોય તો નીચે પૈકી કયું ભૌતિક રાશિ દર્શાવતુ નથી?