એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?
Given the relation, $m=\frac{m_{0}}{\left(1-v^{2}\right)^{\frac{1}{2}}}$
Dimension of $m= M ^{1} L ^{0} T ^{0}$
Dimension of $m_{0}= M ^{1} L ^{0} T ^{0}$
Dimension of $v= M ^{0} L ^{1} T ^{-1}$
Dimension of $v^{2}= M ^{0} L ^{2} T ^{-2}$
Dimension of $c= M ^{0} L ^{1} T ^{-1}$
The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S.
This is only possible when the factor, $\left(1-v^{2}\right)^{1 / 2}$ is dimensionless i.e., $\left(1-v^{2}\right)$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2} .$
Hence, the correct relation is
$m=\frac{m_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$
નીચેના માથી સરખા પરિમાણ વાળુ જોડકુ પસંદ કરો.
નીચે પૈકી કઈ જોડના પરિમાણિક સૂત્ર સમાન છે?
ગતિઉર્જાનું પારિમાણિક સૂત્ર શું થાય?
$M$ દળ અને $L$ બાજુવાળા એક અતિર્દઢ ચોસલા $A$ ને બીજા કોઈ સમાન પરિમાણ અને ઓછા ર્દઢતાઅંક $\eta $ વાળા ચોસલા $B$ પર ર્દઢતાથી એવી રીતે જોડેલું છે કે જેથી $A$ નું નીચલું પૃષ્ઠ એ $B$ ના ઉપરવાળા પૃષ્ઠને સંપૂર્ણ રીતે ઢાંકે છે. $B$ નું નીચલું પૃષ્ઠ સમક્ષિતિજ સમતલ પર ર્દઢતા થી મૂકેલું છે. $A$ ની કોઈ બાજુ પર સૂક્ષ્મ બળ $F$ પૂરું પાડવામાં આવે છે. બળ આપ્યા પછી ચોસલું $A$ સૂક્ષ્મ દોલનો શરૂ કરે છે. તેનો આવર્તકાળ કેટલો હશે?
નીચેના પૈકી કયા સંયોજનનું પરિમાણ સૂત્ર અવરોધના પરિમાણ જેવુ થશે? (જ્યાં ${\varepsilon_0}$ એ શૂન્યવકાશની પરમિટિવિટી અને ${\mu _0}$ એ શૂન્યવકાશની પરમિએબીલીટી છે)