1.Units, Dimensions and Measurement
easy

भौतिकी का एक प्रसिद्ध संबंध किसी कण के 'चल द्रव्यमान (moving mass)' $m$ ' विराम द्रव्यमान (rest mass)' $m_{0}$, इसकी चाल $v$, और प्रकाश की चाल $c$ के बीच है । ( यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छत्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक $c$ को लगाना भूल जाता है । वह लिखता है $: m \frac{m_{0}}{\left(1 \quad v^{2}\right)^{1 / 2}}$ । अनुमान लगाइए कि $c$ कहां लगेगा

Option A
Option B
Option C
Option D

Solution

Given the relation, $m=\frac{m_{0}}{\left(1-v^{2}\right)^{\frac{1}{2}}}$

Dimension of $m= M ^{1} L ^{0} T ^{0}$

Dimension of $m_{0}= M ^{1} L ^{0} T ^{0}$

Dimension of $v= M ^{0} L ^{1} T ^{-1}$

Dimension of $v^{2}= M ^{0} L ^{2} T ^{-2}$

Dimension of $c= M ^{0} L ^{1} T ^{-1}$

The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S.

This is only possible when the factor, $\left(1-v^{2}\right)^{1 / 2}$ is dimensionless i.e., $\left(1-v^{2}\right)$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2} .$

Hence, the correct relation is

$m=\frac{m_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$

Standard 11
Physics

Similar Questions

विधुतचुम्बकीय सिद्धांत के अनुसार विधुत और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुतांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ $SI$ मात्रकों (units) में दी गयी हैं ।
($1$) $[E]$ और $[B]$ के बीच में संबंध है
$(A)$ $[\mathrm{E}]=[\mathrm{B}][\mathrm{L}][\mathrm{T}]$ 
$(B)$ $[\mathrm{E}]=[\mathrm{B}][\mathrm{L}]^{-1}[\mathrm{~T}]$ 
$(C)$ $[\mathrm{E}]=[\mathrm{B}][\mathrm{L}][\mathrm{T}]^{-1}$ 
$(D)$ $[\mathrm{E}]=[\mathrm{B}][\mathrm{L}]^{-1}[\mathrm{~T}]^{-1}$
($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][\mathrm{L}]^2[\mathrm{~T}]^{-2}$ 
$(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][\mathrm{L}]^{-2}[\mathrm{~T}]^2$ 
$(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[\mathrm{~L}]^2[\mathrm{~T}]^{-2}$
$(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[\mathrm{~L}]^{-2}[\mathrm{~T}]^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
hard
(IIT-2018)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.