भौतिकी का एक प्रसिद्ध संबंध किसी कण के 'चल द्रव्यमान (moving mass)' $m$ ' विराम द्रव्यमान (rest mass)' $m_{0}$, इसकी चाल $v$, और प्रकाश की चाल $c$ के बीच है । ( यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छत्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक $c$ को लगाना भूल जाता है । वह लिखता है $: m \frac{m_{0}}{\left(1 \quad v^{2}\right)^{1 / 2}}$ । अनुमान लगाइए कि $c$ कहां लगेगा

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given the relation, $m=\frac{m_{0}}{\left(1-v^{2}\right)^{\frac{1}{2}}}$

Dimension of $m= M ^{1} L ^{0} T ^{0}$

Dimension of $m_{0}= M ^{1} L ^{0} T ^{0}$

Dimension of $v= M ^{0} L ^{1} T ^{-1}$

Dimension of $v^{2}= M ^{0} L ^{2} T ^{-2}$

Dimension of $c= M ^{0} L ^{1} T ^{-1}$

The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S.

This is only possible when the factor, $\left(1-v^{2}\right)^{1 / 2}$ is dimensionless i.e., $\left(1-v^{2}\right)$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2} .$

Hence, the correct relation is

$m=\frac{m_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$

Similar Questions

समीकरण $\left[X+\frac{a}{Y^2}\right][Y-b]=\mathrm{R} T$, में $X$ दाब है, $Y$ आयतन, $\mathrm{R}$ सार्वत्रिक गैस नियतांक है और $\mathrm{T}$ तापमान है। अनुपात $\frac{a}{b}$ के तुल्य भौतिक राशि है:

  • [JEE MAIN 2023]

यदि समय $(t)$, वेग $(v)$, और कोणीय संवेग $(l)$ को मूल मात्रकों के रूप में लिया गया है, तब $t, v$ और $l$ के पदों में द्रव्यमान $( m )$ की विमाएं होंगी।

  • [JEE MAIN 2021]

ऊर्जा का $SI$ मात्रक $J = kg\, m ^{2} s ^{-2}$ है, चाल $v$ का $m s ^{-1}$ और त्वरण $a$ का $m s ^{-2}$ है। गतिज ऊर्जा $(k)$ के लिए निम्नलिखित सूत्रों में आप किस-किस को विमीय दृष्टि से गलत बताएँगे ? $(m$ पिण्ड का द्रव्यमान है )।

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m w^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

इकाई समय में $X$अक्ष के लम्बवत् एकांक क्षेत्रफल से गुजरने वाले कणों की संख्या $n = - D\frac{{({n_2} - {n_1})}}{{({x_2} - {x_1})}}$ द्वारा दी जाती है। यहाँ ${n_1}$ एवं ${n_2}$ क्रमश: ${x_1}$ एवं ${x_2}$ स्थिति में प्रति इकाई आयतन में स्थित कणों की संख्या है, तब विसरण गुणांक $D$ का विमीय सूत्र होगा

यदि $\mathrm{R}, \mathrm{X}_{\mathrm{L}}$. तथा $\mathrm{X}_{\mathrm{C}}$ क्रमशः प्रतिरोध, प्रेरकीय प्रतिघात एवं धारतीय प्रतिघात को निरूपित करते है तो निम्न में से कौनसा विमाहीन है?

  • [JEE MAIN 2023]