If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.
It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
According to the given condition,
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$
$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$
Comparing the coefficients of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=q$
$\therefore d=2 q$
Thus, the common difference of the $A.P.$ is $2 q$
If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$
Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is
The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
If the roots of the equation ${x^3} - 12{x^2} + 39x - 28 = 0$ are in $A.P.$, then their common difference will be
The sum of the first four terms of an $A.P.$ is $56$. The sum of the last four terms is $112$. If its first term is $11$, the number of terms is