If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.
It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
According to the given condition,
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$
$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$
Comparing the coefficients of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=q$
$\therefore d=2 q$
Thus, the common difference of the $A.P.$ is $2 q$
For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to
If ${A_1},\,{A_2}$ be two arithmetic means between $\frac{1}{3}$ and $\frac{1}{{24}}$ , then their values are
The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an $A.P.$ are $a, b, c,$ respectively. Show that $(q-r) a+(r-p) b+(p-q) c=0$
Let $x _1, x _2 \ldots ., x _{100}$ be in an arithmetic progression, with $x _1=2$ and their mean equal to $200$ . If $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$, then the mean of $y _1, y _2$, $y _{100}$ is
Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :