एक दृढ़ घन $A$ का द्रव्यमान $M$ एवं इसकी प्रत्येक भुजा की लम्बाई $L$ है, यह एकसमान विमा के, दूसरे कम दृढ़ता गुणांक $(\eta )$ वाले घन $ B$ के ऊपर इस प्रकार से स्थित है कि $A$ का निचला पृष्ठ $B$ के ऊपरी पृष्ठ को पूरी तरह ढ़क लेता है। $B$ की निचली सतह दृढ़ता से क्षैतिज सतह पर स्थित है। एक अल्प परिमाण का बल $F,\,A$ की एक सतह पर लम्बवत् लगाया जाता है। बल को हटाने पर $A$ छोटे दोलन करने लगता है जिसका आवर्तकाल दिया जाता है

  • [IIT 1992]
  • A

    $2\pi \sqrt {\frac{{M\eta }}{L}} $

  • B

    $2\pi \sqrt {\frac{L}{{M\eta }}} $

  • C

    $2\pi \sqrt {\frac{{ML}}{\eta }} $

  • D

    $2\pi \sqrt {\frac{M}{{\eta L}}} $

Similar Questions

व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा

  • [IIT 2004]

स्टोक के नियमानुसार, एक $a$ त्रिज्या का गोला जो कि , श्यानता गुणांक (coefficient of viscosity) के द्रव में $V$ चाल में चलता है, पर श्यानकर्षण बल (viscous drag) $F$ निम्न समीकरण से निरूपित किया जाता है : $F=a \eta_a v$ आयतन $V$ को निम्न समीकरण से निरूपित किया जा सकता है $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$ जहाँ ${ }^k$ विमाविहीन स्थिरांक है। तो ${ }^a$, और $^c$ के सही मान क्या है ?

  • [KVPY 2017]

यदि संवेग $[ P ]$, क्षेत्रफल $[ A ]$ एवं समय $[ T ]$ का प्रयोग मूलभूत राशियों की तरह किया जाए, तो श्यानता गुणांक का विमीय सूत्र होगा :

  • [JEE MAIN 2022]

गैसों का अवस्था समीकरण निम्नलिखित रुप में व्यक्त होता है $\left( {P + \frac{a}{{{V^2}}}} \right)(V - b) = RT,$ यहाँ $P$ दाब, $V$ आयतन, $T$ परम ताप तथा $a,\,b$ एवं $R$ नियतांक है। $a$ की विमायें होगी

यदि बल $(F)$, लम्बाई $(L)$ तथा समय $(T)$ को मूल-मात्रक माना जाये तो द्रव्यमान का विमीय सूत्र होगा