एक दृढ़ घन $A$ का द्रव्यमान $M$ एवं इसकी प्रत्येक भुजा की लम्बाई $L$ है, यह एकसमान विमा के, दूसरे कम दृढ़ता गुणांक $(\eta )$ वाले घन $ B$ के ऊपर इस प्रकार से स्थित है कि $A$ का निचला पृष्ठ $B$ के ऊपरी पृष्ठ को पूरी तरह ढ़क लेता है। $B$ की निचली सतह दृढ़ता से क्षैतिज सतह पर स्थित है। एक अल्प परिमाण का बल $F,\,A$ की एक सतह पर लम्बवत् लगाया जाता है। बल को हटाने पर $A$ छोटे दोलन करने लगता है जिसका आवर्तकाल दिया जाता है
$2\pi \sqrt {\frac{{M\eta }}{L}} $
$2\pi \sqrt {\frac{L}{{M\eta }}} $
$2\pi \sqrt {\frac{{ML}}{\eta }} $
$2\pi \sqrt {\frac{M}{{\eta L}}} $
यदि $L,\,\,C$ तथा $R$ क्रमश: प्रेरकत्व, धारिता तथा प्रतिरोध प्रदर्शित करते हैं, तो निम्न में से कौन आवृत्ति की विमायें प्रदर्शित नहीं करेगा
निम्नलिखित में से कौन सी राशि विमा विहीन है?
ऊर्जा का $SI$ मात्रक $J = kg\, m ^{2} s ^{-2}$ है, चाल $v$ का $m s ^{-1}$ और त्वरण $a$ का $m s ^{-2}$ है। गतिज ऊर्जा $(k)$ के लिए निम्नलिखित सूत्रों में आप किस-किस को विमीय दृष्टि से गलत बताएँगे ? $(m$ पिण्ड का द्रव्यमान है )।
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m w^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$