A hyperbola whose transverse axis is along the major axis of then conic, $\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 4$ and has vertices at the foci of this conic . If the eccentricity of the hyperbola is $\frac{3}{2}$ , then which of the following points does $NOT$ lie on it ?
$\left( {\sqrt 5 ,2\sqrt 2 } \right)$
$(0, 2)$
$\left( {5,2\sqrt 3 } \right)$
$\left( {\sqrt 10 ,2\sqrt 3 } \right)$
The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is equal to (where $e$ is the eccentricity of the hyperbola)
The equation of the tangents to the hyperbola $3{x^2} - 4{y^2} = 12$ which cuts equal intercepts from the axes, are
If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36,$ then which one of the following is true?
With one focus of the hyperbola $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$ as the centre , a circle is drawn which is tangent to the hyperbola with no part of the circle being outside the hyperbola. The radius of the circle is
Tangents are drawn to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$ $(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$