Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$
The given equation is $16 x^{2}-9 y^{2}=576$
It can be written as
$16 x^{2}-9 y^{2}=576$
$\Rightarrow \frac{x^{2}}{36}-\frac{y^{2}}{64}=1$
$\Rightarrow \frac{x^{2}}{6^{2}}-\frac{y^{2}}{8^{2}}=1$ ............ $(1)$
On comparing equation $(1)$ with the standard equation of hyperbola i.e., $\frac{ x ^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,$
we obtain $a=6$ and $b=8$
We know that $a^{2}+b^{2}=c^{2}$
$\therefore c^{2}=36+64=100$
$\Rightarrow c=10$
Therefore,
The coordinates of the foci are $(±10,\,0)$.
The coordinates of the vertices are $(±6,\,0)$
Eccentricity, $e=\frac{c}{a}=\frac{10}{6}=\frac{5}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 64}{6}=\frac{64}{3}$
Let the eccentricity of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is reciprocal to that of the hyperbola $2 x^2-2 y^2=1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is $................$.
If the eccentricity of a hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{{b^2}}} = 1,$ which passes through $(K, 2),$ is $\frac{{\sqrt {13} }}{3},$ then the value of $K^2$ is
Let $P (3\, sec\,\theta , 2\, tan\,\theta )$ and $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ where $\theta + \phi \, = \frac{\pi}{2}$ , be two distinct points on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ . Then the ordinate of the point of intersection of the normals at $P$ and $Q$ is
Length of latusrectum of curve $xy = 7x + 5y$ is
Consider a hyperbola $H : x ^{2}-2 y ^{2}=4$. Let the tangent at a point $P (4, \sqrt{6})$ meet the $x$ -axis at $Q$ and latus rectum at $R \left( x _{1}, y _{1}\right), x _{1}>0 .$ If $F$ is a focus of $H$ which is nearer to the point $P$, then the area of $\Delta QFR$ is equal to ....... .