एक लंबाई माप $(l)$ की निर्भरता, पराविधुत पदार्थ के पराविद्युतांक $(\varepsilon)$, बोल्टज़मान स्थिरांक (Boltzmann constant) $\left(k_B\right)$, परम ताप $(T)$, एक आयतन में कुछ आवेशित कणों की संख्या $(n)$ (संख्या-घनत्व) तथा हर एक कण के आवेश $(q)$ पर होती है। $l$ के लिए निम्नलिखित में से सही विमीयता वाला कौनसा / कौनसे सूत्र है/हैं?
$(A)$ $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
$(B)$ $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
$(C)$ $\quad l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
$(D)$ $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
$B,A$
$B,C$
$C,A$
$B,D$
यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी
विमाएँ $\left[ MLT ^{-2} A ^{-2}\right]$ सम्बंधित हैं :
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
किसी निकाय की एन्ट्रॉपी इस प्रकार दी गयी है :
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
यहाँ $\alpha$ तथा $\beta$ नियतांक है। $\mu, J , k$ और $R$ क्रमशः मोलों की संख्या, ऊष्मा का यांत्रिक तुल्यांक, बोल्ट्मान स्थिरांक और गैस स्थिरांक हैं।
[${S}=\frac{{dQ}}{{T}}$ लीजिए ]
निम्नलिखित में से गलत विकल्प चुनिए।
यंग के प्रत्यास्थता गुणांक (Young's modulus of elasticity) $Y$ को तीन व्युत्पन्न राशियों (derived quantities) नामतः गुरुत्वीय नियतांक $G$, प्लांक (Planck) नियतांक $h$ तथा प्रकाश की चाल $c$ के द्वारा $Y=c^\alpha h^\beta G^r$ से निरूपित किया जाता है। निम्न में से कौन सा विकल्प सही है?