એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો.
It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.
$=\frac{5}{100} \times Rs .10000= Rs .500$
$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$
Amount in $15^{\text {th }}$ year
$= Rs . 10000+14 \times Rs .500$
$= Rs .10000+ Rs .7000$
$= Rs .17000$
Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$
$= Rs .10000+20 \times Rs .500$
$= Rs .10000+ Rs .10000$
$=R s .20000$
એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
સમાંતર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $56 $ થાય અને તેના અંતિમ ચાર પદોનો સરવાળો $112$ થાય છે. જો તેનું પ્રથમ પદ $11$ હોય, તો તેના પદોની સંખ્યા કેટલી હશે ?
જો સમાંતર શ્રેણી નું $p$ મું, $q$ મું , $r$ મું પદ અનુક્રમે $1/a, 1/b, 1/c$ હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$
અહી $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ એ સમાંતર શ્રેણીમાં છે. જો $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ હોય તો $\frac{a_{11}}{a_{10}}$ ની કિમંત મેળવો.
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$