એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.

$=\frac{5}{100} \times Rs .10000= Rs .500$

$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$

Amount in $15^{\text {th }}$ year

$= Rs . 10000+14 \times Rs .500$

$= Rs .10000+ Rs .7000$

$= Rs .17000$

Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$

$= Rs .10000+20 \times Rs .500$

$= Rs .10000+ Rs .10000$

$=R s .20000$

Similar Questions

જો $a, b, c, d, e, f$ સમાંતર શ્રેણીમાં હોય, તો $e - c = …..$

અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો  $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો 

એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?

ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે 

  • [JEE MAIN 2022]

જ્યારે કોઈ સમાંતર શ્રેણીનું $9^{th}$ પદને તેના $2^{nd}$ પદ દ્વારા ભાગવામાં આવે તો ભાગફળ $5$ મળે અને જ્યારે $13^{th}$ પદને તેના $6^{th}$ પદ વડે ભાગવામાં આવે તો ભાગફળ $2$ અને શેષ $5$ મળે તો સમાંતર શ્રેણીનું પ્રથમ પદ મેળવો