एक व्यक्ति रेसकोर्स के चारों और दौड़ता हुआ यह नोट करता है कि उससे दो ध्वज स्तम्भों की दूरियों का योग सदैव $10$ मीटर रहता है और ध्वज स्तम्भों के बीच दूरी $8$ मीटर है। दौडने के मार्ग द्वारा परिबद्ध क्षेत्रफल, वर्ग मीटर में है
$15\pi $
$12\pi $
$18\pi $
$8\pi $
माना रेखा $5 x+7 y=50$ पर बिंदु $A(\alpha, 0)$ तथा $\mathrm{B}(0, \beta)$ हैं। माना बिंदु $\mathrm{P}$, रेखा खण्ड $\mathrm{AB}$ को अंतः $7: 3$ के अनुपात में बांटता है। माना दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की एक नियता $3 \mathrm{x}-25=0$ है तथा संगम नाभि $S$ है। यदि बिंदु $S$ से $\mathrm{x}$-अक्ष पर लंब, बिंदु $\mathrm{P}$ से होकर जाता है, तो $\mathrm{E}$ के नाभिलंब की लम्बाई है
दीर्घवृत्त $\frac{{{x^2}}}{{27}} + {y^2} = 1$ के बिन्दु $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ पर स्पर्श खींची गयी है। ( जहाँ $\theta \in (0,\;\pi /2)$ तब $\theta $ के किस मान के लिए स्पर्श द्वारा अक्षों पर काटे गये अंत:खण्डो का योग न्यूनतम होगा
माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :
एक मेहराव अर्ध-दीर्घवृत्ताकार रूप का है। यह $8$ मीटर चौड़ा और केंद्र से $2$ मीटर ऊँचा है। एक सिरे से $1.5$ मीटर दूर बिंदु पर मेहराव की ऊँचाई ज्ञात कीजिए।
यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $