एक व्यक्ति रेसकोर्स के चारों और दौड़ता हुआ यह नोट करता है कि उससे दो ध्वज स्तम्भों की दूरियों का योग सदैव $10$ मीटर रहता है और ध्वज स्तम्भों  के बीच दूरी $8$ मीटर है। दौडने के मार्ग द्वारा परिबद्ध क्षेत्रफल, वर्ग मीटर में है

  • A

    $15\pi $

  • B

    $12\pi $

  • C

    $18\pi $

  • D

    $8\pi $

Similar Questions

दीर्घवृत्त (ellipse)

$\frac{x^2}{4}+\frac{y^2}{3}=1$

पर विचार कीजिए। माना कि $H (\alpha, 0), 0<\alpha<2$, एक बिंदु (point) है। बिंदु $H$ से होती हुई एवं $y$-अक्ष के समांतर (parallel to the $y$-axis) एक सरल रेखा (straight line) दीर्घवृत्त एवं इसके सहवृत्त (auxiliary circle) को प्रथम चतुर्थांश (first quadrant) में क्रमशः बिंदुओं $E$ एवं $F$ पर प्रतिच्छेदित (intersect) करती है। बिंदु $E$ पर दीर्घवृत्त की स्पर्श रेखा (tangent) धनात्मक $x$-अक्ष को एक बिंदु $G$ पर प्रतिच्छेदित करती है। मान लिजिए कि $F$ एवं मूलबिंदु (origin) को जोड़ने वाली सरल रेखा, धनात्मक $x$-अक्ष के साथ एक कोण (angle) $\phi$ बनाती है।

$List-I$ $List-II$
यदि $\phi=\frac{\pi}{4}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
यदि $\phi=\frac{\pi}{3}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($Q$) $1$
यदि $\phi=\frac{\pi}{6}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($R$) $\frac{3}{4}$
यदि $\phi=\frac{\pi}{12}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

सही विकल्प हैं :

  • [IIT 2022]

दीर्घवृत्त  $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$के सापेक्ष बिन्दु $(1, 3)$ की स्थिति है

यदि एक दीर्घवृत्त के नाभिलंब की लंबाई $4$ इकाई हैं तथा एक नाभि तथा दीर्घ अक्ष पर स्थित निकटतम शीर्ष के बीच की दूरी $\frac{3}{2}$ इकाई है, तो उसकी उत्केन्द्रता है

  • [JEE MAIN 2018]

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की कोई स्पर्श रेखा अक्षों पर $h$ व $k$ लम्बाई के अन्त: खण्ड काटती है, तो $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $