युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है

  • A

    ${x^2} + {y^2} + 10xy = 0$

  • B

    ${x^2} + {y^2} + 5xy = 0$

  • C

    $2{x^2} + 2{y^2} + 5xy = 0$

  • D

    $2{x^2} + 2{y^2} - 5xy = 0$

Similar Questions

यदि $a > 2b > 0$ तब $m$ का धनात्मक मान जिसके लिए $y = mx - b\sqrt {1 + {m^2}} $, वृत्तों ${x^2} + {y^2} = {b^2}$ तथा ${(x - a)^2} + {y^2} = {b^2}$ की उभयनिष्ठ स्पर्श रेखा है

  • [IIT 2002]

वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है

बिन्दु $(3, -4)$ से वृत्त ${x^2} + {y^2} - 4x - 6y + 3 = 0$ पर खींची स्पर्श रेखा की लम्बाई का वर्ग है

वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर बिन्दु $({x_1},{y_1})$ से खींची गयी स्पर्श रेखा की लम्बाई है

यदि किसी वृत्त का केन्द्र $(-6, 8)$ है एवं यह बिन्दु $(0, 0)$ से गुजरता है, तो $(0, 0)$ पर इसकी स्पर्श रेखा का समीकरण है