- Home
- Standard 11
- Physics
एकांक द्रव्यमान का कोई कण एक विमीय गति करता है ओर इसका वेग समीकरण $v(x)= \beta {x^{ - 2n}}$ के अनुसार परिवर्तित होता है, जहाँ $b$ तथा $n$ स्थिरांक हैं तथा $x$ कण कि स्थिति है। इस कण के त्वरण को $x$ के फलन के रूप में निरूपित किया जा सकता है
$-2n$${\beta ^2}{X^{ - 2n - 1}}$
$-2n$${\beta ^2}{X^{ - 4n - 1}}$
$-2n$${\beta ^2}{X^{ - 2n + 1}}$
$-2n$${\beta ^2}{X^{ - 4n + 1}}$
Solution
$\begin{array}{l}
Accordind\,to\,question,\,velocity\,of\,unit\,\\
mass\,{\rm{varies}}\,as\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,v\left( x \right) = \beta {x^{ – 2n}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,…\left( i \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{dv}}{{dx}} = – 2n\beta {x^{ – 2n – 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,…\left( {ii} \right)\\
Acceleration\,of\,the\,particle\,is\,give\,by\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,a = \frac{{dv}}{{dt}} = \frac{{dv}}{{dx}} \times \frac{{dx}}{{dt}} = \frac{{dv}}{{dx}} \times v\\
{\rm{Using}}\,equation\,\left( i \right)\,and\,\left( {ii} \right),\,we\,get\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,a = \left( { – 2n\beta {x^{ – 2n – 1}}} \right) \times \left( {\beta {x^{ – 2n}}} \right) = – 2n{\beta ^2}{x^{ – 4n – 1}}
\end{array}$