9.Straight Line
hard

एक बिन्दु $P$, रेखा $2 x -3 y +4=0$ पर गति करता है। यदि $Q (1,4)$ तथा $R (3,-2)$ निशिचत बिन्दु हैं, तो $\triangle PQR$ के केन्द्रक का बिन्दुपथ (locus) एक रेखा है

A

जो कि $x$-अक्ष के समांतर है।

B

जिसकी ढाल (slope) $\frac{2}{3}$ है।

C

जिसकी ढाल (slope) $\frac{3}{2}$ है।

D

जो कि $y$-अक्ष के समांतर है।

(JEE MAIN-2019)

Solution

Let point $P$ is $\left( {\alpha ,\beta } \right)\,$ and center of $\Delta PQR$ is $(h,k)$, then $3h = \alpha  + 1 + 3\,\,$ and $3k = \beta  + 4 – 2$

$ \Rightarrow \alpha  = 3h – 4$ and $\beta  = 3k – 2$

Because $\left( {\alpha ,\beta } \right)$ lies on $2x-3y+4=0$

$ \Rightarrow 2\left( {3h – 4} \right) – 3\left( {k – 2} \right) + 4 = 0$

$ \Rightarrow $ losus is $6x-9y+2=0$ whose slope is $\frac{2}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.