माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है
$\frac{110}{13}$
$\frac{132}{13}$
$\frac{142}{13}$
$\frac{151}{13}$
समतल में स्थित किसी बिन्दु $P$ से रेखाओं $x-y=0$ तथा $x+y=0$ की दूरी क्रमशः $d_1(P)$ तथा $d_2(P)$ है। यदि क्षेत्र $R$ उन सभी बिन्दुओं $P$ से बना है जो प्रथम चतुर्थांश (quadrant) में स्थित है तथा $2 \leq d_1(P)+d_2(P) \leq 4$ को संतुष्ट करते है, तब क्षेत्र $R$ का क्षेत्रफल है।
एक समद्विबाहु त्रिभुज की दो बराबर भुजाओं के समीकरण $7x - y + 3 = 0$ तथा $x + y - 3 = 0$ हैं और तीसरी भुजा बिन्दु $(1, -10)$ से गुजरती है। तीसरी भुजा का समीकरण है
त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
त्रिभुज, जिसके शीर्ष $P(2,\;2),\;Q(6,\; - \;1)$ व $R(7,\;3)$ हैं, की माध्यिका $PS$ है। बिन्दु $(1, -1)$ से जाने वाली तथा माध्यिका $PS$ के समान्तर रेखा का समीकरण है
बिन्दु $(3, 4)$ से दो रेखायें खींची जाती हैं, जिनमें से प्रत्येक रेखा, रेखा $x - y = 2$ के साथ $45^o $ का कोण बनाती हेै, तब इन रेखाओं से बने त्रिभुज का क्षेत्रफल है