वक्र $\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1$ पर स्थित एक बिन्दु है  

  • A

    $(A\cos \theta ,\;B\sin \theta )$

  • B

    $(A\sec \theta ,\;B\tan \theta )$

  • C

    $(A{\cos ^2}\theta ,\;B{\sin ^2}\theta )$

  • D

    इनमें से कोई नहीं

Similar Questions

उस अतिपरवलय का समीकरण जिसके अक्ष, निर्देशांक अक्ष है। इसकी नाभियों के बीच की दूरी $16$ तथा उत्केन्द्रता $\sqrt 2 $  है, होगा

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(0, \pm \sqrt{10})$, हैं तथा $(2,3)$ से होकर जाता है।

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(0,±13),$ संयुग्मी अक्ष की लंबाई $24$ है।

रेखा $3x - 4y = 5$ अतिपरवलय ${x^2} - 4{y^2} = 5$ की एक स्पर्श रेखा है तो स्पर्श बिन्दु है  

एक अतिपरवलय का केंद्र मूल बिंदु पर है, तथा यह बिंदु $(4,2)$ से होकर जाता है और इसका अनुप्रस्थ (transverse) अक्ष, $x$-अक्ष के अनुदिश है जिसकी लम्बाई $4$ है। तो इस अतिपरवलय की उत्कें द्रता (eccentricity) है 

  • [JEE MAIN 2019]