$\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ ના વિસ્તરણમાં $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ ની વધતી ઘાતાંકમાં નવમું પદ જો $180$ હોય તો $^{\prime}x^{\prime}$ ની શકય કિમંત મેળવો.
$2$
$1$
$0$
$-1$
જો $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ હોય,તો $n=..........$
જો ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$
વિધાન $1$:${s_3} = 55 \times {2^9}$
વિધાન $2$: ${s_1} = 90 \times {2^8}\;$અને ${s_2} = 10 \times {2^8}$
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$= . . .
${(x + y)^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $4096$ છે , તો વિસ્તરણમાં મહતમ સહગુણક મેળવો.
$(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ ના વિસ્તરણમાં $x^{49}$ નો સહગુણક મેળવો