$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ का मान है:
$\frac{2^{50}}{50 !}$
$\frac{2^{50}}{51 !}$
$\frac{2^{51}}{51 !}$
$\frac{2^{51}}{50 \text { ! }}$
$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $
${(1 + x - 3{x^2})^{3148}}$ के विस्तार में गुणांकों का योगफल होगा
यदि ${(x - 2y + 3z)^n}$ के प्रसार में गुणांकों का योग $128$ हो, तो ${(1 + x)^n}$ के प्रसार में सबसे बड़ा गुणांक है
यदि $\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .$. $30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{(30 !)^2}$, है, तो $\alpha \cdot$ बराबर है :
$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $