समान त्रिज्या की दो बूँदें वायु में गिर रही हैं। उनके क्रांतिक वेग $5 cm/sec$ हैं। यदि बूँदें परस्पर जुड़ जायें, तो क्रांतिक वेग होगा
$10$ सेमी/सै
$2.5 $ सेमी/सै
$5 \times {(4)^{1/3}}$ सेमी/सै
$5 \times \sqrt 2 \,$सेमी/सै
सीसे का एक गोला (व्यास $ 1mm$ ) ग्लिसरीन से भरी लम्बी नली में गिराया जाता है। तो उसके वेग $ v$ में, दूरी के साथ परिवर्तन का सही प्रदर्शन है
त्रिज्या $R$ के एक ठोस गोले का, श्यानता गुणांक $\eta$ के एक द्रव में (गुरूत्वीय बल के कारण) सीमान्त वेग $v_{1}$ है। यदि इस ठोस गोले को बराबर त्रिज्या के $27$ गोलों में बाँटा जाये तो प्रत्येक गोले का सीमान्त वेग इसी द्रव में $v_{2}$ पाया जाता है, तो $\left(v_{1} / v_{2}\right)$ का मान होगा ?
त्रिज्या $'r'$ का कोई लघु गोला विरामावस्था से किसी श्यान द्रव में गिरता है । श्यान बल के कारण इसमें ऊष्मा उत्पन्न होती है गोले के अंतिम (टर्मिनल) वेग पर उत्पन्न ऊष्मा की दर निम्नलिखित में से किसके अनुक्रमानुपाती होती है ?
प्रारम्भ में $2\,mm$ व्यास वाला हवा का बुलबुला, $1750\,kg m ^{-3}$ घनत्व वाले द्रव में $0.35\,cms ^{-1}$ की दर से नियतता से ऊपर उठ रहा है। द्रव का श्यानता गुणांक $..........$ पायस $(poise)$ है निकटतम पूर्णांकों। (हवा का घनत्व नगण्य है).
'$r$' त्रिज्या की छोटी गोलाकार गेंद नगण्य घनत्व के एक श्यान माध्यम में गिरती है। उसका सीमान्त वेग ' $v$ ' है। समान द्रव्यमान तथा $2 r$ त्रिज्या की दूसरी गोली समान श्यान माध्यम में गिरती है तो उसका सीमान्त वेग होगा: