$\left(2^{1 / 3}+\frac{1}{2(3)^{1 / 3}}\right)^{10}$ के द्विपद प्रसार में आरम्भ से $5$ वें तथा अंत से (प्रथम की ओर) $5$ वें पदों का एक अनुपात है

  • [JEE MAIN 2019]
  • A

    $1:2{\left( 6 \right)^{\frac{1}{3}}}$

  • B

    $1:4{\left( 16 \right)^{\frac{1}{3}}}$

  • C

    $4{\left( {36} \right)^{\frac{1}{3}}}\,:\,1$

  • D

    $2{\left( {36} \right)^{\frac{1}{3}}}\,:\,1$

Similar Questions

$\left(\frac{1}{60}-\frac{x^{8}}{81}\right) \cdot\left(2 x^{2}-\frac{3}{x^{2}}\right)^{6}$ के प्रसार में $x$ से स्वतंत्र पद है

  • [JEE MAIN 2019]

यदि  ${(1 + x)^m}$ के द्विपद प्रसार में तृतीय पद  $ - \frac{1}{8}{x^2}$ है, तब $m$ का परिमेय मान है

${(a + b)^n}$ के विस्तार में चतुर्थ पद $56$ हो, तो  $n$ का मान होगा  

${\left( {\sqrt 3  + \sqrt[8]{5}} \right)^{256}}$ के विस्तार में पूर्णांक पदों की संख्या होगी

  • [AIEEE 2003]

${\left( {{x^2} + \frac{a}{x}} \right)^5}$ के प्रसार में $x$ का गुणांक है