$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ के प्रसार में $x^{2012}$ का गुणांक बराबर है ..............|

  • [JEE MAIN 2024]
  • A

    $0$

  • B

    $11$

  • C

    $2$

  • D

    $3$

Similar Questions

${(1 + x)^{18}}$ के प्रसार में यदि $(2r + 4)$ वें तथा $(r - 2)$ वें पदों के गुणांक बराबर हैं, तब  $r =$

$\sqrt 3 \,{\left( {1 + \frac{1}{{\sqrt 3 }}} \right)^{20}}$ के विस्तार में महत्तम पद है

${\left( {\sqrt 3  + \sqrt[8]{5}} \right)^{256}}$ के विस्तार में पूर्णांक पदों की संख्या होगी

  • [AIEEE 2003]

यदि $\left(\frac{ x }{4}-\frac{12}{ x ^{2}}\right)^{12}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद $\left(\frac{3^{6}}{4^{4}}\right) k$ हो, तो $k$ बराबर होगा .........

  • [JEE MAIN 2021]

यदि ${(1 + x)^{2n}}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद समान्तर श्रेणी में हैं, तो $2{n^2} - 9n + 7$ का मान होगा