समीकरण ${\log _4}\{ {\log _2}(\sqrt {x + 8} - \sqrt x )\} = 0$ का एक वास्तविक मूल होगा
$1$
$2$
$3$
$4$
मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.
समीकरण $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ के वास्तविक हलों की संख्या है $............$
यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |
यदि $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$ हो, तो $x$ बराबर है