यदि $\alpha \beta$ तथा $\gamma$ समीकरण ${x^3} - 3{x^2} + x + 5 = 0$ के मूल हों, तो $y = \sum {\alpha ^2} + \alpha \beta \gamma $ निम्न समीकरण को सन्तुष्ट करेगा
${y^3} + y + 2 = 0$
${y^3} - {y^2} - y - 2 = 0$
${y^3} + 3{y^2} - y - 3 = 0$
${y^3} + 4{y^2} + 5y + 20 = 0$
समीकरण $\left|x^2-8 x+15\right|-2 x+7=0$ के सभी मूलों का योग है:
समीकरण ${x^2} - |x| - \,6 = 0$ के सभी वास्तविक मूलों का गुणनफल होगा
यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
यदि $a + b + c =1, ab + bc + ca =2$ तथा $abc =3$ हैं, तो $a ^{4}+ b ^{4}+ c ^{4}$ बराबर है ................ |