यदि $\alpha \beta$ तथा $\gamma$  समीकरण ${x^3} - 3{x^2} + x + 5 = 0$ के मूल हों, तो $y = \sum {\alpha ^2} + \alpha \beta \gamma $ निम्न समीकरण को सन्तुष्ट करेगा

  • A

    ${y^3} + y + 2 = 0$

  • B

    ${y^3} - {y^2} - y - 2 = 0$

  • C

    ${y^3} + 3{y^2} - y - 3 = 0$

  • D

    ${y^3} + 4{y^2} + 5y + 20 = 0$

Similar Questions

माना [ $t ], t$ से कम या बराबर महत्तम पूर्णांक फलन को दर्शाता है। तब $x$ में समीकरण $[ x ]^{2}+2[ x +2]-7=0$

  • [JEE MAIN 2020]

बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है:

  • [KVPY 2018]

माना $\alpha$ और $\beta$ समीकरण $5 x^{2}+6 x-2=0$ के मूल हैं यदि $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots$, तो

  • [JEE MAIN 2020]

यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे

यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा