असमिका ${x^2} - 4x < 12\,{\rm{ }}$ का हल होगा
$x < - \,2$ or $x > 6$
$ - \,6 < x < 2$
$2 < x < 6$
$ - \,2 < x < 6$
मान $\alpha, \beta$ समीकरण $x ^{2}+(20)^{1 / 4} x +(5)^{1 / 2}=0$ के दो मूल हैं। तो $\alpha^{8}+\beta^{8}$ बराबर है
यदि $x, y$ वास्तविक संख्याएं $(real\,numbers)$ इस प्रकार हैं कि $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$ तो $(x+y) /(x-y)$ का मान $(value)$ क्या होंगे ?
मान लीजिये कि $a, b, c$ शुन्येतर $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $a+b+c=01$ यदि $q=a^2+b^2+c^2$ तथा $r=a^4+b^4+c^4$ हो तो, निम्नलिखित में से कौन सा कथन आवश्यक रूप से सही है?
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
यदि $2 + i$ समीकरण ${x^3} - 5{x^2} + 9x - 5 = 0$ का एक मूल हो तो अन्य मूल होंगे