$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.
Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$
Then, $PB = AB - AP =(12-3)\, cm =9\, cm$ $[ AB =12 \,cm ]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\Delta PBQ$ , $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$
In $\Delta PRA$ , $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$
since, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$
Or, $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ ${\theta _1}\,$ અને ${\theta _2}$ ની જીવા . . . બિંદુ આગળ કાટખૂણે બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$ )
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
જો ઉપવલય $3x^2 + 4y^2 = 12$ ના બિંદુ $P$ આગળનો અભિલંબ રેખા $2x + y = 4$ ને સમાંતર અને બિંદુ $P$ આગળનો સ્પર્શક બિંદુ $Q(4, 4)$ માંથી પસાર થતો હોય તો $PQ$ =
ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ના કોઈ પણ નાભિબિંદુમાંથી ઉપવલયના કોઈ પણ સ્પર્શક ને લંબપાદ પરના બિંદુપથ પરનું નીચેનામાંથી ક્યું બિંદુ આવેલ છે?
જો બિંદુ $P$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ પરનું ચલબિંદુ હોય અને નાભિઓ ${F_1}$ અને ${F_2}$ છે.જો $A$ એ ત્રિકોણ $P{F_1}{F_2}$ નું ક્ષેત્રફળ હોય તો $A$ ની મહતમ કિંમત મેળવો.