Gujarati
8. Sequences and Series
medium

A series whose $n^{th}$ term is $\left( {\frac{n}{x}} \right) + y,$ the sum of $r$ terms will be

A

$\left\{ {\frac{{r(r + 1)}}{{2x}}} \right\} + ry$

B

$\left\{ {\frac{{r(r - 1)}}{{2x}}} \right\}$

C

$\left\{ {\frac{{r(r - 1)}}{{2x}}} \right\} - ry$

D

$\left\{ {\frac{{r(r + 1)}}{{2y}}} \right\} - rx$

Solution

(a) On putting $n = 1,2,3,…..$

First term of the series $a = \frac{1}{x} + y$,

Second term =$\frac{2}{x} + y$

$d = \left( {\frac{2}{x} + y} \right) – \left( {\frac{1}{x} + y} \right) = \frac{1}{x}$

Sum of $r$ terms of the series

$ = \frac{r}{2}\left[ {2\left( {\frac{1}{x} + y} \right) + (r – 1)\frac{1}{x}} \right]$

$ = \frac{r}{2}\left[ {\frac{2}{x} + 2y + \frac{r}{x} – \frac{1}{x}} \right]$

$ = \frac{{{r^2} – r + 2r}}{{2x}} + ry$

$ = \left\{ {\frac{{r{\mkern 1mu} (r + 1)}}{{2x}}} \right\} + ry$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.