If $x,y,z$ are in $A.P.$ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in other $A.P.$ then . . .
$x = y = z$
$x = y = - z$
$x = 1;y = 2;z = 3$
$x = 2;y = 4;z = 6$
The sum of numbers from $250$ to $1000$ which are divisible by $3$ is
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
The value of $x$ satisfying ${\log _a}x + {\log _{\sqrt a }}x + {\log _{3\sqrt a }}x + .........{\log _{a\sqrt a }}x = \frac{{a + 1}}{2}$ will be
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.