If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
$\frac{{pq - 1}}{2}$
$\frac{{1 - pq}}{2}$
$\frac{{pq + 1}}{2}$
$ - \frac{{pq + 1}}{2}$
If $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ are in $A.P.$, then
The arithmetic mean of first $n$ natural number
If the ${n^{th}}$ term of an $A.P.$ be $(2n - 1)$, then the sum of its first $n$ terms will be
If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is
Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.