If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be

  • A

    $\frac{{pq - 1}}{2}$

  • B

    $\frac{{1 - pq}}{2}$

  • C

    $\frac{{pq + 1}}{2}$

  • D

    $ - \frac{{pq + 1}}{2}$

Similar Questions

If ${a^2},\,{b^2},\,{c^2}$ be in $A.P.$, then $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ will be in

If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$

If ${m^{th}}$ terms of the series $63 + 65 + 67 + 69 + .........$ and $3 + 10 + 17 + 24 + ......$ be equal, then $m = $

The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is

The ratio of the sums of first $n$ even numbers and $n$ odd numbers will be