Gujarati
8. Sequences and Series
easy

If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be

A

$\frac{{pq - 1}}{2}$

B

$\frac{{1 - pq}}{2}$

C

$\frac{{pq + 1}}{2}$

D

$ - \frac{{pq + 1}}{2}$

Solution

(c) Since ${T_p} = a + (p – 1)d = \frac{1}{q}$…..$(i)$

and ${T_q} = a + (q – 1)d = \frac{1}{p}$ …..$(ii)$

From $(i)$ and $(ii),$ we get $a = \frac{1}{{pq}}$ and $d = \frac{1}{{pq}}$

Now sum of $pq$ terms $ = \frac{{pq}}{2}\left[ {\frac{2}{{pq}} + (pq – 1)\frac{1}{{pq}}} \right]$

$ = \frac{{pq}}{2}.\frac{2}{{pq}}\left[ {1 + \frac{1}{2}(pq – 1)} \right] = \left[ {\frac{{2 + pq – 1}}{2}} \right] = \frac{{pq + 1}}{2}$

Note : Students should remember this question as a formula.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.