14.Probability
hard

एक समुच्चय $S$ में 7 अवयव हैं। $S$ का एक अरिक्त उपसमुच्चय $A$ तथा $S$ का एक अवयव $x$, यादृच्छया चुने गए, तो $x \in A$ की प्रायिकता है

A

$\frac{1}{2}$

B

$\frac{64}{127}$

C

$\frac{63}{128}$

D

$\frac{31}{128}$

(JEE MAIN-2014)

Solution

Let $\mathrm{S}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$

Let the chosen element be $x_{i}$,

Total number of subsets of $S=2^{7}=128$

No. of non-empty subsets of $S=128-1$ $=127$

We need to find number of those subsets that contains $x_{i}$,

$\boxed2\boxed2\boxed2\boxed2\boxed1\boxed2\boxed2$

${x_1}\,{x_2} –  – {x_i} –  – {x_7}$

For those subsets containing $x_{i}$ each element has 2 choices.

i.e., (included or not included) in subset,

However as the subset must contain $x_{i}$ $x_{f}$ has only one choice. (included one)

So, total no. of subsets containing $x_{i}=2 \times 2 \times 2 \times 2 \times 1 \times 2 \times 2=64$

Required prob

$ = \frac{{No.\,\,of\,\,subsets\,\,containing\,\,{x_i}}}{{Total\,\,no.\,\,of\,non – empty\,\,subsets}}$

$=\frac{64}{127}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.