Gujarati
13.Oscillations
easy

एक सरल लोलक का दोलनकाल $T$ यदि इसके गोलक को ऋणावेश दिया जाये एवं इसके नीचे की सतह को धनावेश दिया जाये तो इसका नया दोलनकाल

A

$T$ से कम होगा

B

$T$ से अधिक होगा

C

$T$ के तुल्य होगा

D

अनन्त होगा

Solution

दी गई स्थिति में पेण्डुलम का आवर्तकाल

$T' = 2\pi \sqrt {\frac{l}{{\left( {g + \frac{{qE}}{m}} \right)}}} $

 $T' < T$

Standard 11
Physics

Similar Questions

नीचे दिए गए प्रश्नों के उत्तर दीजिए :

$(a)$ किसी कण की सरल आवर्त गति के आवर्तकाल का मान उस कण के द्रव्यमान तथा बल-स्थिरांक पर निर्भर करता है : $T=2 \pi \sqrt{\frac{m}{k}}$ । कोई सरल लोलक सन्निकट सरल आवर्त गति करता है । तब फिर किसी लोलक का आवर्तकाल लोलक के द्रव्यमान पर निर्भर क्यों नहीं करता ?

$(b)$ किसी सरल लोलक की गति छोटे कोण के सभी दोलनों के लिए सन्निक सरल आवर्त गति होती है । बड़े कोणों के दोलनों के लिए एक अधिक गूढ़ विश्लेषण यह दर्शाता है कि $T$ का मान $2 \pi \sqrt{\frac{l}{g}}$ से अधिक होता है । इस परिणाम को समझने के लिए किसी गुणात्मक कारण का चिंतन कीजिए |

$(c)$ कोई व्यक्ति कलाई घड़ी बाँधे किसी मीनार की चोटी से गिरता है । क्या मुक्त रूप से गिरते समय उसकी घड़ी यथार्थ समय बताती है ?

$(d)$ गुरुत्व बल के अंतर्गत मुक्त रूप से गिरते किसी केबिन में लगे सरल लोलक के दोलन की आवृत्ति क्या होती है ?

medium

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.