A simple pendulum is being used to determine the value of gravitational acceleration $\mathrm{g}$ at a certain place. The length of the pendulum is $25.0\; \mathrm{cm}$ and a stop watch with $1\; \mathrm{s}$ resolution measures the time taken for $40$ oscillations to be $50\; s$. The accuracy in $g$ is  ....... $\%$

  • [JEE MAIN 2020]
  • A

    $3.40$

  • B

    $5.40 $

  • C

    $4.40 $

  • D

    $2.40 $

Similar Questions

The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt {\frac{l}{g}} $ where $l$ is about $100 \,cm$ and is known to have $1\,mm$ accuracy. The period is about $2\,s$. The time of $100$ oscillations is measured by a stop watch of least count $0.1\, s$. The percentage error in $g$ is ......... $\%$

In an experiment, the following observation's were recorded : $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$ using the formula , $Y=\frac{{4MgL}}{{\pi {D^2}l}}$, the maximum permissible error in $Y$ is ......... $\%$

If the random error in the arithmetic mean of $50$ observations is $\alpha$, then the random error in the arithmetic mean of $150$ observations would be

In the determination of Young's modulus $\left(Y=\frac{4 MLg }{\pi / d ^2}\right)$ by using Searle's method, a wire of length $L=2 \ m$ and diameter $d =0.5 \ mm$ is used. For a load $M =2.5 \ kg$, an extension $\ell=0.25 \ mm$ in the length of the wire is observed. Quantities $d$ and $\ell$ are measured using a screw gauge and a micrometer, respectively. They have the same pitch of $0.5 \ mm$. The number of divisions on their circular scale is $100$ . The contributions to the maximum probable error of the $Y$ measurement

  • [IIT 2012]

In an experiment, mass of an object is measured by applying a known force on it, and then measuring its acceleration. If in the experiment, the measured values of applied force and the measured acceleration are $F=10.0 \pm 0.2 \,N$ and $a=1.00 \pm 0.01 \,m / s ^2$, respectively. Then, the mass of the object is ............... $kg$

  • [KVPY 2015]