A soap bubble assumes a spherical surface. Which of the following statement is wrong
The soap film consists of two surface layers of molecules back to back
The bubble encloses air inside it
The pressure of air inside the bubble is less than the atmospheric pressure; that is why the atmospheric pressure has compressed it equally from all sides to give it a spherical shape
Because of the elastic property of the film, it will tend to shrink to as small a surface area as possible for the volume it has enclosed
Write the equation of excess pressure for liquid drop.
Two spherical soap bubbles formed in vacuum has diameter $3.0\,mm$ and $4.0\,mm$ . They coalesce to form a single spherical bubble. If the temperature remains unchanged, find the diameter of the bubble so formed ....... $mm$
The surface tension of soap solution is $25 \times {10^{ - 3}}\,N{m^{ - 1}}$. The excess pressure inside a soap bubble of diameter $1 \,cm$ is ....... $Pa$
Two narrow bores of diameter $5.0\, {mm}$ and $8.0\, {mm}$ are joined together to form a $U-$shaped tube open at both ends. If this ${U}$-tube contains water, what is the difference in the level of two limbs of the tube.
[Take surface tension of water ${T}=7.3 \times 10^{-2} \, {Nm}^{-1}$, angle of contact $=0, {g}=10\, {ms}^{-2}$ and density of water $\left.=1.0 \times 10^{3} \,{kg} \,{m}^{-3}\right]$ (in $mm$)
A cylinder with a movable piston contains air under a pressure $p_1$ and a soap bubble of radius $'r'$ . The pressure $p_2$ to which the air should be compressed by slowly pushing the piston into the cylinder for the soap bubble to reduce its size by half will be: (The surface tension is $\sigma $ , and the temperature $T$ is maintained constant)