4-1.Newton's Laws of Motion
hard

A spring mass system (mass $m$, spring constant $\mathrm{k}$ and natural length $l$ ) rest in equilibrium on a horizontal disc. The free end of the spring is fixed at the centre of the disc. If the disc together with spring mass system, rotates about it's axis with an angular velocity $\omega,\left(\mathrm{k} > > \mathrm{m} \omega^{2}\right)$ the relative change in the length of the spring is best given by the option

A

$\frac{2 m \omega^{2}}{k}$

B

$\frac{m \omega^{2}}{3 k}$

C

$\sqrt{\frac{2}{3}}\left(\frac{\mathrm{m} \omega^{2}}{\mathrm{k}}\right)$

D

$\frac{m \omega^{2}}{k}$

(JEE MAIN-2020)

Solution

$\mathrm{k} \Delta \ell=\mathrm{m} \omega^{2}\left(\ell_{0}+\Delta \ell\right)$

$\Delta \ell=\frac{m \omega^{2} \ell_{0}}{k-m \omega^{2}} \approx \frac{m \omega \ell_{0}}{k}$

$\frac{\Delta \ell}{\ell_{0}}=$ Relative change $=\frac{\mathrm{m} \omega^{2}}{\mathrm{k}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.