एक टेबल-टेनिस गेंद पर चालक पदार्थ का लेप चढ़ाकर एक धागे की सहायता से दो धात्विक प्लेटों के बीच लटकाया गया है। एक प्लेट भू-सम्पर्कित है। जब दूसरी प्लेट को उच्च वोल्टेज जनरेटर से जोड़ा जाता है तो गेंद

  • A

    उच्च विभव की प्लेट की ओर आकर्षित होकर वहीं रुक जायेगी

  • B

    बिना गति के लटकती रहेगी

  • C

    दोनों प्लेटों को क्रम से टक्कर लगाकर दोनों ओर गति करेगी

  • D

    भू-संयोजित प्लेट की ओर आकर्षित होकर वहीं रुक जायेगी

Similar Questions

छह आवेशों को एक नियमित षट्भुज (hexagon) जिसकी भुजा की लम्बाई $a$ है, के परितः (around) रखा गया है, जैसा कि चित्र में दर्शाया गया है। उनमें से पांच का आवेश $q$, तथा बचे हुए एक आवेश $x$ है। प्रत्येक आवेश से षट्भुज की समीपतम भुजा पर डाला गया लम्बवत षट्भुज के केंद्र $O$ से गुजरता है तथा उस भुजा के द्वारा द्विभाजित (bisect) होता है।

निम्न में से कौन सा (से) कथन SI मानक में सही है (हैं)?

$(A)$ जब $x=q$, $O$ पर विधुत क्षेत्र (electrical field) का परिमाण शून्य है।

$(B)$ जब $x=-q, O$ पर विधुत क्षेत्र का परिमाण $\frac{q}{6 \pi \epsilon_0 a^2}$ है।

$(C)$ जब $x=2 q$, $O$ पर विभव (potential) $\frac{7 q}{4 \sqrt{3} \pi \epsilon_0 a}$ है।

$(D)$ जब $x=-3 q$, $O$ पर विभव $-\frac{3 q}{4 \sqrt{3} \pi \epsilon_0 a}$ है ।

  • [IIT 2022]

किसी स्थान पर एक विद्युत क्षेत्र, $\overrightarrow{ E }=(25 \hat{ i }+30 \hat{ j }) NC ^{-1}$, विद्यमान है। यदि मूलबिन्दु पर विभव का मान शून्य माना जाय तो, $x=2\; m , y=2\; m$ पर विभव होगा :

  • [JEE MAIN 2015]

एक बिन्दु आवेश के कारण किसी बिन्दु पर विभव का मान होगा

$9.0×{10^{ - 13}}$ सेमी त्रिज्या वाले परमाणवीय नाभिक $(Z = 50)$ की सतह पर विद्युत विभव

त्रिज्या $R$ के एक वृत्त की परिधि पर $10$ आवेश ऐसे रखे गये हैं जिससे क्रमागत आवेशों के बीच कोणीय दूरी समान रहें। एकान्तर आवेशों $1,3,5,7,9$ के ऊपर क्रमशः $(+q)$ आवेश और $2 ,4,6,8,10$ के ऊपर क्रमशः $(-q)$ आवेश हैं। वृत्त के केन्द्र पर विभव $(V)$ और विधुत क्षेत्र $( E )$ होगी।

(अनन्त पर $V =0$ लीजिए)

  • [JEE MAIN 2020]