Trigonometrical Equations
hard

All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation

A

$2\left| {\sin \,x} \right| = 3\sin \,y$

B

$\sin \,x = \left| {\sin \,y} \right|$

C

$2\,sin\, x = sin\, y$

D

$sin\, x = 2\, sin\, y$

(JEE MAIN-2019)

Solution

$2^{\sqrt{\sin ^{2} x-2 \sin x+5}}-4^{-\sin ^{2} y} \leq 1$

$ \Rightarrow \,{2^{\sqrt {{{(\sin \,x – 1)}^2} + 4} }}\, \leqslant {4^{{{\sin }^2}y}}$

$\sqrt {\frac{{\underbrace {{{(\sin \,x – 1)}^2}}_{ \geqslant 0} + 4}}{{ \geqslant 2}}}  \leqslant \underbrace {2\,{{\sin }^2}\,y}_{ \leqslant 2}$

this is possible only if $\sin x=1$ and $|\sin y|=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.