All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
$2\left| {\sin \,x} \right| = 3\sin \,y$
$\sin \,x = \left| {\sin \,y} \right|$
$2\,sin\, x = sin\, y$
$sin\, x = 2\, sin\, y$
The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ , will have a solution is
The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
The number of values of $x$ in the interval $[0, 5 \pi ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-