The amplitude of $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 - i}}$ is

  • A

    $0$

  • B

    $\pi /6$

  • C

    $\pi /3$

  • D

    $\pi /2$

Similar Questions

If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is

If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to

If ${z_1},{z_2} \in C$, then $amp\,\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $

Given $z$ is a complex number such that  $|z| < 2,$ then the maximum value of $|iz + 6 -8i|$ is equal to-

Amplitude of $\left( {\frac{{1 - i}}{{1 + i}}} \right)$ is