An artificial satellite is revolving around a planet of mass $M$ and radius $R$ in a circular orbit of radius $r$. From Kepler’s third law about the period of a satellite around a common central body, square of the period of revolution $T$ is proportional to the cube of the radius of the orbit $r$. Show using dimensional analysis that $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $, where $k$ is dimensionless constant and $g$ is acceleration due to gravity.
According to Kepler's third law,
$\mathrm{T}^{2} \propto r^{3} \Rightarrow \mathrm{T} \propto r^{\frac{3}{2}}$
We know that $\mathrm{T}$ is a function of $\mathrm{R}$ and $\mathrm{g}$,
Let, $\quad \mathrm{T} \propto r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$
$\therefore \mathrm{T}=k r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$
where $k$ is a dimensionless constant of proportionality. Substituting the dimensions of each term in equ. $(i)$, we get
$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right] =[\mathrm{L}]^{\frac{3}{2}}[\mathrm{~L}]^{a}\left[\mathrm{LT}^{-2}\right]^{b}$
$=\left[\mathrm{L}^{a+b+\frac{3}{2}} \mathrm{~T}^{-2 b}\right]$
By comparing the powers,
$a+2 b+\frac{3}{2}=0$
$\quad=-2 b=1 \Rightarrow b=-\frac{1}{2}$
Using equ. $(ii)$,
$a-\frac{1}{2}+\frac{3}{2}=0 \Rightarrow a=-1$
By substituting the values of $a$ and $b$ in equ. $(i)$,
$\mathrm{T} =k r^{\frac{3}{2}} \mathrm{R}^{-1} g^{-\frac{1}{2}}$
$\therefore \mathrm{T} =\frac{k}{\mathrm{R}} \sqrt{\frac{r^{3}}{g}}$
The potential energy $u$ of a particle varies with distance $x$ from a fixed origin as $u=\frac{A \sqrt{x}}{x+B}$, where $A$ and $B$ are constants. The dimensions of $A$ and $B$ are respectively
The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kinetic energy | $IV$. | $[M L^0T^{–2}]$ |
Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$ then value of $c$ is given $p$ is pressure, $d$ is density and $E$ is energy
If velocity$(V)$, force$(F)$ and time$(T)$ are chosen as fundamental quantities then dimensions of energy are