An artificial satellite is revolving around a planet of mass $M$ and radius $R$ in a circular orbit of radius $r$. From Kepler’s third law about the period of a satellite around a common central body, square of the period of revolution $T$ is proportional to the cube of the radius of the orbit $r$. Show using dimensional analysis that $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $, where $k$ is dimensionless constant and $g$ is acceleration due to gravity.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

According to Kepler's third law,

$\mathrm{T}^{2} \propto r^{3} \Rightarrow \mathrm{T} \propto r^{\frac{3}{2}}$

We know that $\mathrm{T}$ is a function of $\mathrm{R}$ and $\mathrm{g}$,

Let, $\quad \mathrm{T} \propto r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$

$\therefore \mathrm{T}=k r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$

where $k$ is a dimensionless constant of proportionality. Substituting the dimensions of each term in equ. $(i)$, we get

$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right] =[\mathrm{L}]^{\frac{3}{2}}[\mathrm{~L}]^{a}\left[\mathrm{LT}^{-2}\right]^{b}$

$=\left[\mathrm{L}^{a+b+\frac{3}{2}} \mathrm{~T}^{-2 b}\right]$

By comparing the powers,

$a+2 b+\frac{3}{2}=0$

$\quad=-2 b=1 \Rightarrow b=-\frac{1}{2}$

Using equ. $(ii)$,

$a-\frac{1}{2}+\frac{3}{2}=0 \Rightarrow a=-1$

By substituting the values of $a$ and $b$ in equ. $(i)$,

$\mathrm{T} =k r^{\frac{3}{2}} \mathrm{R}^{-1} g^{-\frac{1}{2}}$

$\therefore \mathrm{T} =\frac{k}{\mathrm{R}} \sqrt{\frac{r^{3}}{g}}$

Similar Questions

The potential energy $u$ of a particle varies with distance $x$ from a fixed origin as $u=\frac{A \sqrt{x}}{x+B}$, where $A$ and $B$ are constants. The dimensions of $A$ and $B$ are respectively

The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is

  • [AIPMT 1996]

 Match List $-I$ with List $-II$
  List $-I$   List $-II$
$A$. Coefficient of Viscosity $I$. $[M L^2T^{–2}]$
$B$. Surface Tension  $II$. $[M L^2T^{–1}]$
$C$. Angular momentum $III$. $[M L^{-1}T^{–1}]$
$D$. Rotational Kinetic energy $IV$. $[M L^0T^{–2}]$

  • [JEE MAIN 2024]

Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$  then value of $c$ is  given $p$ is pressure, $d$ is density and $E$ is energy

If velocity$(V)$, force$(F)$ and time$(T)$ are chosen as fundamental quantities then dimensions of energy are