परमाणु के प्रारंभिक प्रतिरूप में यह माना गया था कि आवेश $Z e$ का बिंदु आमाप का धनात्मक नाभिक होता है जो त्रिज्या $R$ तक एकसमान घनत्व के ऋणावेश से घिरा हुआ है। परमाणु पूर्ण रूप में विध्यूत उदासीन है। इस प्रतिसूप के लिए नाभिक से $r$ दूरी पर विध्यूत क्षेत्र कितना है?
Solution The charge distribution for this model of the atom is as shown in Figure The total negative charge in the uniform spherical charge distribution of radius $R$ must be $-Z e$, since the atom (nucleus of charge $Z e+\text { negative charge })$ is neutral. This immediately gives us the negative charge density $\rho,$ since we must have
$\frac{4 \pi R^{3}}{3} \rho=0-Z e$
$\rho=-\frac{3 Z e}{4 \pi R^{3}}$
To find the electric fleld $E ( r )$ at a point $P$ which is a distance $r$ away from the nucleus, we use Gauss's law. Because of the spherical symmetry of the charge distribution, the magnitude of the electric field $E ( r )$ depends only on the radial distance, no matter what the direction of $r$. Its direction is along (or opposite to) the radius vector $r$ from the origin to the point $P$. The obvious Gaussian surface is a spherical surface centred at the nucleus. We consider two situations, namely, $r \,< \,R$ and $r \,>\, R$
$(i)$ $r \,<\, R:$ The electric flux $\phi$ enclosed by the spherical surface is
$\phi=E(r) \times 4 \pi r^{2}$
where $E(r)$ is the magnitude of the electric field at $r .$ This is because the field at any point on the spherical Gaussian surface has the same direction as the normal to the surface there, and has the same magnitude at all points on the surface.
The charge $q$ enclosed by the Gaussian surface is the positive nuclear charge and the negative charge within the sphere of radius $r,$
i.e., $q=z e+\frac{4 \pi r^{3}}{3} \rho$
Substituting for the charge density $\rho$ obtained earlier, we have $q=Z e-Z e \frac{r^{3}}{R^{3}}$
Gauss's law then gives, $E(r)=\frac{Z e}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}-\frac{r}{R^{3}} ; r \,<\, R$
The electric field is directed radially outward.
$(ii)$ $r\,>\,R:$ In this case, the total charge enclosed by the Gaussian spherical surface is zero since the atom is neutral. Thus, from Gauss's law. $E(r) \times 4 \pi r^{2}=0$ or $E(r)=0 ; r\,>\,R$
At $r=R,$ both cases give the same result: $E=0$
गॉस प्रमेय के अनुसार अनन्त लम्बाई के सीधे तार के कारण विद्युत क्षेत्र अनुक्रमानुपाती होता है
एक ठोस धात्विक गोले पर $ + \,3Q$ आवेश है। इस गोले के संकेन्द्रीय एक चालक गोलीय कोश है जिस पर आवेश $ - Q$ है। गोले की त्रिज्या $a$ तथा गोलीय कोश की त्रिज्या $b(b < a)$ है। केन्द्र से $R$ दूरी पर $(a < R < b)$ विद्युत क्षेत्र कितना है
एक चालक गोले की त्रिज्या $R = 20$ सेमी. है। इसे $Q = 16\,\mu C$ आवेश दिया गया। इसके केन्द्र पर तीव्रता $\overrightarrow E $ है
$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।
$(a)$ गोले के अंदर
$(b)$ गोले के ठीक बाहर
$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?
$10\,cm$ त्रिज्या वाले एकसमान आवेशित कुचालक गोले के केन्द्र से $20\,cm$ की दूरी पर विद्युत क्षेत्र $100\, V/m$ है। गोले के केन्द्र से $3\,cm$ दूरी पर विद्युत क्षेत्र .....$V/m$ होगा