જો $A$ અને $B$ એ સ્વતંત્ર ઘટના છે કે જેથી $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} $ થાય છે. તો $\mathrm{p}$ ની મહતમ કિમંત મેળવો કે જેથી $\mathrm{P}$ ($\mathrm{A}, \mathrm{B}$ પૈકી એક્જ ઘટના ઉદભવે $)=\frac{5}{9}$ .

  • [JEE MAIN 2021]
  • A

    $\frac{1}{3}$

  • B

    $\frac{2}{9}$

  • C

    $\frac{4}{9}$

  • D

    $\frac{5}{12}$

Similar Questions

$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is

  • [JEE MAIN 2013]

$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે  .. . . પ્રકારનો સંબંધ બને.

  • [IIT 1985]

વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :

$P(A$ નિષ્ફળ જાય) $= 0.2$

$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$

$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$

નીચેની સંભાવનાઓ શોધો :

$P(A $ એકલી નિષ્ફળ જાય)

ભારતને ટોસ જીતવાની સંભાવના $3/4$ છે. જો તે ટોસ જીતે, તો મેચ  જીતવાની સંભાવના $4/5$ થાય નહિતર માત્ર $1/2$ થાય તો ભારત મેચ જીતે તેની સંભાવના મેળવો.

ઘટનાઓ $E$ અને $F$ માટે $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ અને $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$  છે. $E$ અને $F$ નિરપેક્ષ છે ?