किसी निश्चित जनसंख्या में $10\%$ मनुष्य धनी हैं, $5\%$ प्रसिद्ध है और $3\%$ धनी व प्रसिद्ध है। इस जनसंख्या में से एक व्यक्ति को यदृच्छया चुनने की प्रायिकता, जो या तो धनी या प्रसिद्ध हो लेकिन दोनों न हो, है
$0. 07$
$0.08$
$0. 09$
$0. 12$
तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है
तीन जहाज $A, B$ व $C$ इग्लैंड से भारत आते हैं। यदि उनके सुरक्षित आने के अनुपात क्रमश: $2 : 5, 3 : 7$ व $6 : 11$ हैं तो सभी जहाजों के सुरक्षित आने की प्रायिकता है
$A$ व $B$ के एक वर्ष में मरने की प्रायिकतायें क्रमश: $p$ व $q$ हैं तो उनमें से केवल एक वर्ष के अन्त में जिन्दा रहे, इसकी प्रायिकता है
यदि $P ( A )=\frac{3}{5}, P ( B )=\frac{1}{5}$ और $A$ तथा $B$ स्वतंत्र घटनाएँ हैं तो $P ( A \cap B )$ ज्ञात कीजिए।
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)