यदि $A$ और $B$ दो घटनायें हैं, तब $P(\bar A \cap B) = $
$P(\bar A)\,\,\,P(\bar B)$
$1 - P(A) - P(B)$
$P(A) + P(B) - P(A \cap B)$
$P(B) - P(A \cap B)$
$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P(A) = 0.4$ , $P\,(A + B) = 0.7$,$P\,(AB) = 0.2,$ तो $P\,(B) = $
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी. को नहीं चुना है।
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( B \cap A ^{\prime}\right)$
मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?
तीन समुच्चयों (sets) $E _1=\{1,2,3\}, F _1=\{1,3,4\}$ और $G _1=\{2,3,4,5\}$ पर विचार कीजिए। समुच्चय $E _1$ से दो अवयवों (elements) को बिना प्रतिस्थापित किए (without replacement) यादृच्छया (randomly) चुना जाता है, और मान लीजिए कि $S _1$ इन चुने हए अवयवों के समुच्चय को निरूपित करता है। मान लोजिए कि $E _2= E _1- S _1$ तथा $F _2= F _1 \cup S _1$ हैं। अब समुच्चय $F _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _2$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $G _2= G _1 \cup S _2$ है। अंततः समुच्चय $G _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _3$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $E _3= E _2 \cup S _3$ है। घटना $E _1= E _3$ के ज्ञात होने पर, मान लीजिए कि $p$, घटना $S _1=\{1,2\}$ की सप्रतिबंध प्रायिकता (conditional probability) को निरूपित करता है। तब $p$ का मान है