10-2. Parabola, Ellipse, Hyperbola
hard

यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान

A

$7982$

B

$2898$

C

$2929$

D

$3289$

(JEE MAIN-2022)

Solution

$\alpha=\frac{1}{5} \cos \theta, \beta=\frac{1}{2} \sin \theta$

Equation of tangent to $y ^{2}=4 x$

$y = mx +\frac{1}{ m }$

It passes through $(\alpha, \beta)$

$\frac{1}{2} \sin \theta=m \frac{1}{5} \cos \theta+\frac{1}{m}$

$m ^{2}\left(\frac{\cos \theta}{5}\right)- m \left(\frac{1}{2} \sin \theta\right)+1=0$

It has two roots $m_{1}$ and $m_{2}$ where $m_{1}=4 m_{2}$

$m _{1}+ m _{2}=\frac{\frac{1}{2} \sin \theta}{\frac{\cos \theta}{5}}$

$m _{1} m _{2}=\frac{5}{\cos \theta}$

After eliminating $m _{1}$ and $m _{2}$

$\cos \theta=\frac{-5 \pm \sqrt{29}}{2}$

$\alpha=\frac{-5 \pm \sqrt{29}}{10} \Rightarrow 10 \alpha+5=\pm \sqrt{29}$

$\beta^{2}=\frac{1}{4} \sin ^{2} \theta \Rightarrow 16 \beta^{2}=-50 \pm 10 \sqrt{29}$

$(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ $=2929$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.